sin(2α)=2sin(α)×cos(α)
cos(2α)=cos2(α)−sin2(α)
cos(2α)=1−2sin2(α)
cos(2α)=2cos2(α)−1
tg(2α)=1−tg2(α)2tg(α)
ctg(2α)=2tg(α)1−tg2(α)
sin(3α)=3sin(α)−4sin3(α)
cos(3α)=4cos3(α)−3cos(α)
tg(3α)=cos(3α)sin(3α)
cos2(2α)=21+cos(α)
sin2(2α)=21−cos(α)
tg2(2α)=1+cos(α)1−cos(α)
tg(2α)=sin(α)1−cos(α),α=πn,n∈Z
tg(2α)=1+cos(α)sin(α),α=π+2πn,n∈Z